Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Bo Huang,* Jin-Chang Ding, Miao-Chang Liu, Xi-Chang Zhang and Mao-Lin Hu

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail:
xiaobhuang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.078$
$w R$ factor $=0.153$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(Z)-Ethyl 3-(4-chlorophenyl)-2-[(triphenyl-phosphoranylidene)amino]prop-2-enoate

The title compound, $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{ClNO}_{2} \mathrm{P}$, exists in the Z form. The short $\mathrm{C} \cdots \mathrm{O} \quad[2.700(4) \AA]$ and $\mathrm{C} \cdots \mathrm{N} \quad[2.963(4) \AA$ and $2.988(5) \AA$ i intramolecular contacts may indicate the presence of weak intramolecular hydrogen bonds.

Comment

The readily available iminophosphoranes have become useful building blocks in organic synthetic strategies directed towards the synthesis of nitrogen-containing heterocycles (Fresneda \& Molina, 2004). The title compound, (I), is an intermediate in the preparation of imidazolinones (Ding et al. 2003), some of which exhibit fungicidal and herbicidal activities (Yang et al., 2004).

(I)

The molecule of (I) contains four essentially planar phenyl rings, three of which, $\mathrm{C} 12-\mathrm{C} 17(A), \mathrm{C} 18-\mathrm{C} 23(B)$ and $\mathrm{C} 24-$ C29 (C), belong to the triphenylphosphine group (Fig. 1). The dihedral angles $A / B, A / C$ and B / C are 56.2 (1), 78.8 (2) and $87.4(1)^{\circ}$, respectively. Bond lengths and angles in the title compound (Table 1) are similar to those found in (Z)-ethyl 3-phenyl-2-[(triphenylphosphoranylidene)amino]prop-2-enoate (Huang et al., 2005).

The short $\mathrm{C} \cdots \mathrm{O}$ and $\mathrm{C} \cdots \mathrm{N}$ intramolecular contacts (Table 2) may indicate the presence of weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Experimental

The title compound was synthesized in 70% yield by the Staudinger reaction of ethyl β-azidoacetate with triphenylphosphine at room temperature (Molina et al., 1993). Single crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of a solution in ethanol and trichloromethane (5:1, v / v; m.p. 453-455 K). IR (KBr , cm^{-1}): $v 2950,1671,1592,1410,1231 ;{ }^{1} \mathrm{H}$ NMR (chloroform- d, p.p.m):

Received 29 March 2005
Accepted 4 April 2005
Online 9 April 2005
$\delta 8.12-7.20(m, 19 \mathrm{H}), 6.67(d, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.86(q, 2 \mathrm{H}, J=7.1 \mathrm{~Hz})$, $1.00(t, 3 H, J=7.1 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (chloroform- d, p.p.m): $\delta 8.60(s)$.

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{ClNO}_{2} \mathrm{P}$
$M_{r}=485.92$
Monoclinic, $P 2_{1} / n$
$a=10.4682(8) \AA$
$b=17.7551(13) \AA$
$c=14.1264(10) \AA$
$\beta=106.058(1)^{\circ} \AA$
$V=2523.1(3) \AA^{3}$
$Z=4$

$$
D_{x}=1.279 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1467 reflections
$\theta=2.2-24.1^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.23 \times 0.19 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\text {min }}=0.947, T_{\text {max }}=0.981$
13251 measured reflections

Refinement

Refinement on F^{2}
4535 independent reflections
3370 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-12 \rightarrow 12$
$k=-17 \rightarrow 21$
$l=-14 \rightarrow 16$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0467 P)^{2}\right. \\
& +1.2582 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.38 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.33 \mathrm{e}^{-3} \\
& \text { Extinction correction: none }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Cl} 1-\mathrm{C} 1$	$1.745(4)$	$\mathrm{O} 1-\mathrm{C} 10$	$1.452(4)$
$\mathrm{P} 1-\mathrm{N} 1$	$1.576(3)$	$\mathrm{O} 2-\mathrm{C} 9$	$1.198(4)$
$\mathrm{P} 1-\mathrm{C} 29$	$1.811(3)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.369(4)$
$\mathrm{P} 1-\mathrm{C} 17$	$1.811(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.353(4)$
$\mathrm{P} 1-\mathrm{C} 23$	$1.812(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.505(5)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.343(4)$		
$\mathrm{N} 1-\mathrm{P} 1-\mathrm{C} 29$	$104.92(15)$	$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 10$	$115.9(3)$
$\mathrm{N} 1-\mathrm{P} 1-\mathrm{C} 17$	$115.30(15)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{P} 1$	$130.6(2)$
$\mathrm{C} 29-\mathrm{P} 1-\mathrm{C} 17$	$106.53(15)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	$123.6(3)$
$\mathrm{N} 1-\mathrm{P} 1-\mathrm{C} 23$	$117.03(16)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$117.6(3)$
$\mathrm{C} 29-\mathrm{P} 1-\mathrm{C} 23$	$101.32(15)$	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{O} 1$	$123.1(3)$
$\mathrm{C} 17-\mathrm{P} 1-\mathrm{C} 23$	$110.04(15)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$	$113.9(3)$

Table 2

Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C28-H28 $\cdots \mathrm{N} 1$	0.93	2.59	$2.988(5)$	106
C7-H7 1	0.93	2.27	$2.700(4)$	107
C3-H3 $\cdots \mathrm{N} 1$	0.93	2.35	$2.963(4)$	123

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $\mathrm{C}-\mathrm{H}=0.93 \AA(\mathrm{CH})$ and $0.97 \AA$ $\left(\mathrm{CH}_{2}\right)$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, or $\mathrm{Csp} p^{3}-\mathrm{H}=0.96 \AA$, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support by the Bureau of Science and Technology of Wenzhou (grant No. G 2004053).

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL. Bruker AXS Inc., Madison, Winsonsin, USA.
Ding, M. W., Sun, Y. \& Liu, Z. J. (2003). Synth. Commun. 33, 1267-1274.
Fresneda, P. M. \& Molina, P. (2004). Synlett, 1, 1-17.
Huang, X. B., Liu, M. C., Wu, H. Y., Ding, J. C. \& Hu, M. L. (2005). Acta Cryst. E61, o280-o281.
Molina, P., Pastor, A. \& Vilaplana, M. J. (1993). Tetrahedron, 49, 7769-7778.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yang, F. L., Liu, Z. J., Huang, X. B. \& Ding, M. W. (2004). J. Heterocycl. Chem. 41, 77-83.

